Конспект урока » Производная степенной функции»в 11 классе

Содержимое материала:

Дата: __25-09-2018г._

Тема: Производная степенной функции.

Цели урока:

способствовать выработке навыка вычисления производной степенной функции;

воспитывать чувство уважения  между учащимися для максимального раскрытия их способностей;

воспитывать аккуратность выполнения записей в тетради и на доске;

совершенствовать умения вычислять производные.

Ход урока.

I. Организационный момент.

Готовность класса к уроку. Сообщение цели урока.

II. Изучение нового материала.

Формула для вычисления производной степенной функции xn, где n — произвольное натуральное число, большее 1, такова:

(xn)’=nxn-1 (1)

Формула производной функции х2 уже известна: (х2)’ = 2х. Пользуясь формулой дифференцирования произведения, получаем: 

(x3)’=( x2⋅x)’= (x2)’x+ x2(x)’= 2x⋅x + x2⋅1=3 x2;

(x4)’=( x3⋅x)’= (x3)’x+ x3(x)’= 3x2⋅x+ x3⋅1=4x3.

Заметим теперь, что 

(x2)’=2x2-1, (x3)’=3x3-1, (x4)’=4x4-1,т.е. для n, равного 2, 3 и 4, формула (1) доказана. Продолжая аналогичные рассуждения, нетрудно убедиться в справедливости формулы (1) для n, равного 5, 6 и т. д. 

Докажем, что формула (1) верна для любого натурального n4. 

Допустим, что формула (1) верна при n = k, т. е. что (xk)’=kxk-1.

Покажем, что тогда формула (1) верна при n = k+1. Действительно, 

(xk+1)’=(xk⋅x)’=( xk)’⋅x + xk⋅(x)’= kxk-1⋅x + xk = (k+1) xk

Поэтому из того, что формула (1) верна при п = 4, следует, что она верна и при n = 5, но тогда она верна и при п = 6, а следовательно, и при n = 7 и т. д. до любого n∈ N (строгое доказательство основано на методе математической индукции). 

Если n = 1 или n = 0, то при х≠0 эта формула также справедлива. Действительно, по формуле (1) при х≠0 

(x1)’=1⋅x1-1 = 1⋅x0 =1,

(x0)’=0⋅x0-1 = 0,что совпадает со значениями производных функций х и 1, уже известными из предыдущего пункта.

Пусть, наконец, п — целое отрицательное число, тогда n = —m, , где т — число натуральное. Применяя правило дифференцирования частного и пользуясь уже доказанной для натуральных т формулой (1), получаем при х≠0: 

В результате можно сделать вывод:

 
Для любого целого n и любого x (x≠0 при n≤1) 

(xn)’=nxn-1

Из дифференцируемости степенной функции и основных правил вычисления производных вытекает, что целые рациональные функции (многочлены) и дробно-рациональные функции дифференцируемы в каждой точке своей области определения.

III.  Закрепление нового материала.

Пример 1

Вычислить производную функции y=6×100+7×50+8x.

Решение.

Применим правило суммы:

y′(x)=(6×100+7×50+8x)′=(6×100)′+(7×50)′+(8x)′.

Вынесем постоянные множители за знак производной:

y′(x)=6(x100)′+7(x50)′+8(x)′.

Найдем производные степенных функций:

y′(x)=6⋅100×99+7⋅50×49+8⋅1.

Окончательно получаем

y′(x)=600×99+350×49+8=2(300×99+175×49+4).

Пример 2

Вычислить производную функции y=(3√)2−52√.

Решение.

Производная постоянной величины равна нулю. Следовательно,

y′(x)=((3√)2−52√)′=((3√)2)′−(52√)′=0−0=0.

Пример 3

Найти производную функции y=1x+2×2+3×3.

Решение.

Дифференцируем сначала как сумму функций:

y′(x)=(1x+2×2+3×3)′=(1x)′+(2×2)′+(3×3)′.

Вынося постоянные множители за знак производной и вычисляя производные степенных функций, получаем

y′(x)=(1x)′+2(1×2)′+3(1×3)′=(x−1)′+2(x−2)′+3(x−3)′=−1⋅x−2+2⋅(−2)x−3+3⋅(−3)x−4=−1×2−4×3−9×4.

Пример 4

Найти производную следующей функции y=8×5−6×4+5×3−7×2+4x+3.

Решение.

Используя правило дифференцирования полинома, получаем выражение для производной в виде

y′(x)=(8×5−6×4+5×3−7×2+4x+3)′=(8×5)′−(6×4)′+(5×3)′−(7×2)′+(4x)′+(3)′=8⋅5×4−6⋅4×3+5⋅3×2−7⋅2x+4⋅1+0=40×4−24×3+15×2−14x+4.

Пример 5

Найти производную функции y=x22+x33+x44.

Решение.

Производная записывается в виде:

y′(x)=(x22+x33+x44)′=(x22)′+(x33)′+(x44)′=12(x2)′+13(x3)′+14(x4)′=12⋅2x+13⋅3×2+14⋅4×3=x+x2+x3=x(x2+x+1).

Пример 6

Найти производную функции y=x22−2×2.

Решение.

Производная имеет следующий вид:

y′(x)=(x22−2×2)′=(x22)′−(2×2)′=12(x2)′−2(1×2)′=12(x2)′−2(x−2)′=12⋅2x−2⋅(−2)x−3=x+4x−3=x+4×3.

Пример 7

Вычислить значение производной функции y=x2−12×2 в точке x=1.

Решение.

Производная данной функции имеет вид:

y′(x)=(x2−12×2)′=(x2)′−(12×2)′=(x2)′−12(x−2)′=2x−12⋅(−2)x−3=2x+1×3.

Значение производной в точке x=1 равно:

y′(1)=2⋅1+113=3.

Пример 8

Найти производную функции y=7√3x+3√7.

Решение.

Здесь мы имеем дело с линейной функцией, коэффициенты которой являются иррациональными числами. Производная будет равна

y′(x)=(7√3x+3√7)′=(7√3x)′+(3√7)′=7√3⋅1+0=7√3.

Пример 9

Найти производную функции y=x3−−√4.

Решение.

Представив данную иррациональную функцию как степенную, получаем:

y′(x)=(x3−−√4)′=(x34)′=34×34−1=34x−14=34x√4.

Пример 10

Найти производную иррациональной функции y=xn−−√m, где m≠0.

Решение.

Дифференцируя как степенную функцию с дробным показателем степени, получаем

y′(x)=(xn−−√m)′=(xnm)′=nmxn−mm=nmx−m−nm=nmxm−nm=nmxm−n−−−−√m.

Пример 11

Вычислить производную функции y=x2−−√π.

Решение.

Производная данной степенной функции равна

y′(x)=(x2−−√π)′=(x2π)′=2πx2π−1=2πx2−ππ=2πx−π−2π=2πxπ−2−−−−√π.

Пример 12

Найти производную следующей функции: y=x(x2+2)(x3−3).

Решение.

Данную функцию можно представить в виде полинома:

y=x(x2+2)(x3−3)=(x3+2x)(x3−3)=x6+2×4−3×3−6x.

Дифференцируя почленно, получаем:

y′(x)=(x6+2×4−3×3−6x)′=(x6)′+(2×4)′−(3×3)′−(6x)′=6×5+2⋅4×3−3⋅3×2−6=6×5+8×3−9×2−6.

Пример 13

Вычислить производную функции y=x5−−√+5x−−√.

Решение.

Перепишем функцию в виде:

y(x)=x5−−√+5x−−√=15√⋅x√+5√⋅1x√.

Используем формулу производной суммы двух функций:

y′(x)=(15√⋅x√+5√⋅1x√)′=(15√⋅x√)′+(5√⋅1x√)′.

Вынесем постоянные множители и вычислим производные:

y′(x)=(15√⋅x√)′+(5√⋅1x√)′=15√(x√)′+5√(1x√)′=15√(x√)′+5√(x−12)′=15√⋅12x√+5√⋅(−12)x−12−1=125√x√−5√2x−32.

Здесь мы использовали выражение (x√)′=(x12)′=12x−12=12x√. После упрощения получаем

y′(x)=125√x√−5√2x−32=125√x√−5√2×32=1⋅x25√x√⋅x−5√⋅5√2×32⋅5√=x−525√x32=x−525×3−−−√.

Пример 14

Найти производную функции y=x√3−1x√3.

Решение.

Перейдем к записи в степенной форме:

y=x√3−1x√3=x13−x−13.

Производная разности функций, очевидно, равна разности производных этих функций:

y′(x)=(x13−x−13)′=(x13)′−(x−13)′.

Вычисляя производные степенных функций, получаем

y′(x)=13×13−1−(−13)x−13−1=13x−23+13x−43=13(x−23+x−43)=13(1×23+1×43)=13(1×2−−√3+1×4−−√3).

Пример 15

Найти производную функции y=5×3+3−2×3+x5−−√3.

Решение.

Преобразуем слагаемые данной функции в степенную форму:

y=5×3+3−2x−3+x53.

Применяя линейные свойства производной и правило дифференцирования степенной функции, получаем:

y′(x)=(5×3+3−2x−3+x53)′=(5×3)′+3′−(2x−3)′+(x53)′=5⋅3×2+0−2⋅(−3)x−3−1+53×53−1=15×2+6x−4+53×23=15×2+6×4+5×2−−√33

Пример 16

Найти производную функции y=1x+1x√+1x√3.

Решение.

Представив слагаемые в виде степенных функций, получаем следуюшее выражение для производной:

y′(x)=(1x+1x√+1x√3)′=(1x)′+(1x√)′+(1x√3)′=−1×2−12x−12−1−13x−13−1=−1×2−12x−32−13x−43=−1×2−12×3−−√−13×4−−√3.

Пример 17

Вычислить производную функции y=2x√+3x√3.

Решение.

По правилу дифференцирования степенной функции находим:

y′(x)=(2x√+3x√3)′=(2x−12+3×13)′=(2x−12)′+(3×13)′=2(x−12)′+3(x13)′=2⋅(−12)x−12−1+3⋅13×13−1=−x−32+x−23=1×2−−√3−1×3−−√.

Пример 18

Найти производную иррациональной функции y=xx√−−−−√.

Решение.

Преобразуя функцию к степенной форме, получаем:

y′(x)=(xx√−−−−√)′=(x⋅x12−−−−−√)′=(x32−−−√)′=⎛⎝(x32)12⎞⎠′=(x34)′=34×34−1=34x−14=34x√4.

Пример 19

Найти производную следующей иррациональной функции y=xx2−−√3−−−−−√3.

Решение.

Аналогично предыдущему примеру, находим:

y′(x)=(xx2−−√3−−−−−√3)′=(x⋅x23−−−−−√3)′=(x53−−−√3)′=⎛⎝(x53)13⎞⎠′=(x53⋅13)′=(x59)′=59×59−1=59x−49=59×4−−√9.

Пример 20

Найти производную функции y=32xx√3.

Решение.

Дифференцируя заданную функцию как степенную, получаем:

y′(x)=(32xx√3)′=(32x⋅x13)′=32(x1+13)′=32(x43)′=32⋅43×43−1=2×13=2x√3.

Итоги урока.

Понравилась публикация? Поделиться прямо сейчас:
Для всех тех, кто учит детей